

Advancements in Regenerative Fuel Cell Technologies for Space Applications

Keith J. Billings¹, Thomas I. Valdez¹, Adam K. Kisor ¹, Samad A. Firdosy¹, William R. Bennett², Ian J. Jakupca³, Kenneth Burke², and Mark A. Hoberecht²

¹Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA

²Glenn Research Center, Cleveland, OH

³Analex Corporation

Cleveland, OH

AAAS 99th Annual Meeting Pomona CA

• The PEM fuel cell

Regenerative fuel cell systems and space applications

Performance improvements

System design

The PEM fuel cell

$$H_2 + 1/2O_2 \rightarrow H_2O + Energy$$

E = 1.23 V per cell

The Polymer Electrolyte

$$CF_2$$
 CF_2
 CF_3
 CF_2
 CF_2
 CF_3
 CF_2
 CF_3
 CF_3

Nafion

•Superacidic pKa = -6

•Used in thin films (2-7 mils)

Fuel Cell Development

Clockwise:

- 1. JPL high performance fuel cell MEA. Gas diffusion layer is detached to expose catalyst layer beneath.
- 2. Single cell hardware for testing fuel cell MEAs.
- 3. Fuel cell test station in JPL's fuel cell lab

Water Electrolysis

Reverse fuel cell reaction $H_2O + Energy \rightarrow H_2 + 1/2O_2$

High pressure operation ~ 3600psi

Copyright 2018 California Institute of Technology.

Regenerative Fuel Cell Concept

Space Applications

Mass-efficient energy storage for larger scale applications

Regen fuel cells scale up well: higher specific mass for larger systems

Batteries scale up linearly: constant specific mass (Wh/kg)

Integration with life support systems

- "Waste" heat is not waste at all
- Emergency high pressue oxygen
- Emergency water

www.nasa.gov

High Performance Regenerative Fuel Cell Concepts

- Fabrication methods
 - Electrode structure
 - Intimacy of electrode contact with membrane
- Water rejection
 - Electrode structure
 - Gas diffusion layer choice
- Membrane thickness
- High Pt catalyst loading
- Gas Diffusion Layer Optimization
- Oxygen evolution catalyst development for electrolysis

Fabrication Methods – fast drying spray deposition process

Copyright 2018 California Institute of Technology.

Government sponsorship acknowledged.

Water rejection – advanced Teflon electrode structure

Copyright 2018 California Institute of Technology.

Membrane thickness – mass transfer resistance vs mechanical properties

Copyright 2018 California Institute of Technology.

Government sponsorship acknowledged.

High catalyst loading and gas diffusion layer optimization

Microporous layer (MPL) coated carbon felt gives preferable performance at target current densities relative to carbon paper

75% Voltage efficiency at 200mA/cm2

High Performance Electrolysis Concepts

Advanced catalyst – Irridium-doped ruthenium oxide

Dope ruthenium oxide with iridium to stabilize the III oxidation state

85% Voltage efficiency at 200mA/cm2

Regenerative fuel cell design for Mars applications

Support habitats, mobility systems,

ISRU

 Work in tandem with solar or nuclear energy sources

www.nasa.gov

Regenerative fuel cell system design (AIRS)

Combine elements to create a mass-efficient energy storage system

- Fuel cell stack
- High pressure electrolysis cell stack
- Reactant storage
- Reactant management/balance of plant

Fuel Cell Subsystem

opyright 2018 California Institute of Technology.

Modular system design

Copyright 2018 California Institute of Technology.

AIRS Regenerative System Design Stats

AIRS Energy Storage System

- 55% Round trip electrical power efficiency
 - Output Power: 10 kW
 - Up to 2kW heating power for habitat, electronics
 - 90% efficiency when accounting for heat use
 - Recharge Power: 18.3 kW
- Teledyne Energy Systems, Passive Flow-Through Stack Technology
- Proton Onsite 3600 PSIG electrolyzer with common endplate design
- System Energy Density:
 - > 360 Wh/kg @ 120 kWh storage (24 hr cycle)
 - ~ 850 Wh/kg @ 3,600 kWh storage (30 day cycle)

Summary

- Regenerative fuel cell systems offer high specific energy storage for space applications, with opportunities for integration with life support
- Efficiency >90% is achievable with the application of waste heat
- Small changes in cell design have system-level consequences

Acknowledgements

The work presented here was carried out at the Jet Propulsion Laboratory, California Institute of Technology for the National Aeronautics and Space Administration.

